CALCULATION OF RADIATIVE HEAT TRANSMISSION
THROUGH DISPERSIVE MEDIA

L. A, Konyukh and ¥. B. Yurevich UDC 536.3

A method is outlined for solving the equation of energy radiation and also for determining the
thermal radiation flux in an emitting, an absorbing, and an anisotropically dispersing medi-
um. Values of radiation flux calculated here agree closely with data published in the techni-
cal literature.

Calculating the radiation in a gaseous medium with a slight admixture of solid particles, liquid drop-
lets, or opaque gases is worthwhile for the evaluation of many high-temperature processes. In order to
calculate the thermal radiation flux in such contaminated media, it is necessary to solve the integrodiffer-
ential equation of heat radiation. Under conditions of local thermodynamic equilibrium and with the intensity
of monochromatic radiation independent of the azimuth angle ¢, this equation for a plane layer of an emit-
ting, an absorbing, and a dispersing medium is
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where function P, u') has been obtained from the dispersion indicatrix P(9) = 2 aiPj (cos ) at the angle
{=0

subtending the layer, according to the law of cosines in spherical trigonometry
cos 8 = py’ + (1 — p2) ' [1 — ()1 cos (9 — ')

and by subsequent integration with respect to (¢ —¢') [2]:
]

P, W)= DaP (W) P, (). @)

i=0
We will assume that the plane layer of dispersing material is bounded by plane-parallel diffusively
radiating surfaces. The boundary conditions at these surfaces will then be [3]:
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Since the radiation intensity in problems of this kind is discontinuous at u = 0, hence it is worthwhile
to split the problem into I"(r, w) with 0 <p = 1 and I7(r, p) with —1 =u <0, and then, following the Eavon
method [1], to use the Legendre expansion of I*(r, p) into polynomials Pp(2u—1) and of I~(r, p) into poly-
nomials P, (2u + 1):
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In these expansions (4) we will retain only N terms, and this number N will determine the degree of approx-
imation to which. the radiation equation is solved by that method.

Inserting (4) into (1), we obtain two equations for I+(-r, ©) and I7(7, 1) (here and henceforth we im-
ply summation over i)
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We next multiply equations (5} by (2k + 1)Py . (2pu—1) and by 2k + 1)Pi(2p + 1) respectively, then
integrate with respect to p the first equation from 0 to 1 and the second equation from —1 to 0. Letting
k=0, 1, 2,..., we obtain a system of 2(N + 1) ordinary differential equations in functions Ii‘ (7) and I3 (1)

21T ") BT @) = B @ sens 17 (@70} 47 (1 — 00Purd (),
(—1Y % a;, dl (T) 4+ Badv (); 5 {3 @) Vit + 17 () V—ii}+
-+ 47 (1 — o) Borl o (7). (6)
where
1
ap= (2 +1) @+ 1) | pPy @u—1) P, @ — 1) dp
[
LI Y
2
2i -1 P
— 2 £ 1)
i —; 1’ —i +1,
0, k<<i—1, b>iL1 (7)
and

Bun = (20 -+ 12+ 1) | Py @u—1) P, (20 — 1) s

0

:(2i+1)<2k+1>( P @n+1)P2n+ Dy

0, ey
:{2i+1,i:k (8)

569



by changing to variables i = 2u—1 or it = 2p + 1 in the integrals and subsequently applying the condition
of orthogonality of Legendre polynomials as well as the recurrence relation [4]

(A1) Pyyy (W) + 0Py () = @0+ 1) pP, ()- ©)

The coefficients matrix

1
Voo = @i+ 1)@k + 1) [ da \ P (2u—1)P, 2w — 1) P, p)dy,
0 0
[

1
Vaion = (20 + D&+ 1) fdufpk@u%—l)f’ @u — 1) Pu, p)dy',
—1 0

1 0

Vosn =@+ D@+ 1) [ do SPk u— P2 + )Py, w)dy,
' 0 ~10
Vaa =@ 1)@+ 1) [du] Pt P D PG W)Y (10)
has the following symmetry properties:
1. By virtue of definition (2), expressions (10) yield
Veisk = Vonsis Voiok = Vonoir 1)

2. From the normalization of the dispersion indicatrix
1
5 Pu, w)dp =2, (12)
—1

follows
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2, k=0,
Y-D-{-k ™ Voo = {0 k 1. (14)

3. By virtue of definition (2) and the property of Legendre polynomials that Py (—u) = (—1)k Pr),
P, u') does not change after a simultaneous replacement of 4 — —u and u' — —pu', so that
Voton = (= D im0 Veson = (=1 ™V (15)

The boundary conditions for I'{(T) and I7(r) are derived by analogy to (6), i. e., by inserting the ex-
pansion (4) into the boundary conditions (3), then multiplying the first of them by (2k + 1) Py (24 —1) and the
second of them by (2k + 1) P (2p + 1), then integrating from 0 to 1 and from —1 to 0 respectively, and thus
obtaining 2(N + 1) boundary conditions for I'{('r) and Ii' ()

Binl i (0) = 4mey T, (0) 20,07 (0)aye (— 1Y,
Biud7 (0) = 4], (ty) +20,1F (50) 0tz

Expansion (4) for I*(r, pu) and I~(1, p) is convenient, inasmuch as it yields a rather simple expres-
sion for the thermal radiation flux q. Indeed,
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TABLE 1. Coefficients cj in (32) for the Radiation Flux g

Simplest forward elongated dispersion indicatrix

Ty ¢y -10° [ ¢3-10% Cq

0.4 13.6 0.564 16,97 5,079
0.8 1,72 0,561 7,41 5,071
1.0 0.638 0,560 5,01 5,069
1.2 0.274 0,560 3,42 5,067
1.6 0.032 0,560 1,59 4,813
2.0 0.004 0,560 0.773 5,066

Spherical dispersion indicatrix

T ¢ ey cy [

0.1 0,085 0,619 0,532 4,783
9.5 0.009 0.607 0.219 4,727
1.0 0 0.603 0.146 4,719
2,0 0 0.591 0.071 4.701

All integrals under the summation sign Z are equal to zero for i = 2.

It follows from the resulting expression (17) that, in order to calculate the exact thermal radiation
flux, it suffices to know two coefficients in the Legendre polynomial expansion of radiation intensities I
* {(r, ¥} and I7(r, p). For not too elongated dispersion indicatrices these coefficients can be found fairly
accurately from the solution to system (6) with N = 1, i. e., to a system of fourth-order ordinary differ-
ential equations.

When the temperature distribution in the layer is known, then the solution of this system is easy.
Otherwise, one must add to this system also the differential equation of energy and then the temperature
distribution as well as the thermal flux distribution will have to be determined by differential methods of
computation.

It is to be noted that, when N = 0, system (6) with the boundary condition (18) becomes identical to
the well known differential -difference approximation used in [5] for axially symmetric indicatrices of any
shape and for an isotropic intensity distribution in the flux. Indeed, by virtue of properties 1 to 3, we have

V040 7= Yoo0 = Vi» Vim0 7" Vooso = Vo

and

V1040 -+ Y_o40 == 2.

Coefficients y; and vy represent the fractions of radiation flux dispersed by a unit volume along its
path of incidence, within the solid angle 27, and within the solid angle 27_ respectively. As a consequence
of the last relation, y; = 2 corresponds to a dispersion indicatrix maximally elongated forward, v; =1
corresponds to a symmetric dispersion indicatrix, and y; = 0 corresponds to a dispersion indicatrix maxi-
mally elongated backward.

In the conventional notation, system (6) for determining the thermal radiation flux q = Ef (1)—Ej (1)
becomes to the zeroth approximation

dEg:(T) = (0gt1 —2) E§ (1) - 0g7,Eo (1) 4 25 (1 — 0y) I, (7),
5 ) g )+ 2 0at)EF ) — 21— Iy 0, as)
T

where
_|_ - —_—
EF(v) =—————1°4(T) D Er (= L0 4(1)
We will now examine more closely the case N = 1, which (unlike N = 0) yields the functions I},’"(T),

Iir (1), Ig(t), Iy (1) and thus also the thermal radiation flux g with sufficient accuracy, as will be shown
here. When N = 1, the coefficients matrix (10) yields 16 coefficients. By virtue of properties 1 to 3,
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Yire0 = Vo041 = — Vo100 = —V-0-1 = Vo
'Y_o+1 + Y+0+1 - 0: O],' ‘V_0+'l - VB?
Vioot T Voomr = 0, or Yyo =7Va

Voo = — Var-0 = Vo Vi1 = Vya = Vs

Vir41 = V1o = Ve (18)
On the basis of the normalization (12), moreover, we have
Yo+ Ve = SSdu[ fPl(Qu — )P (g, p)dy
0 1 1
+ {Pew + PG wydw] =6{d 5, WP, w)dy'-
2 0 =
4 1 1
— 30— =624 f dp. 5 lP; WwP; ) dw
=0 0 =
—3m—1)=2[a—3m—1D 20)
0, 1
Vot Te=9 | du | Py @n 1) Py @ — P W)
=100 .
l 1
+ﬂ5Wfﬂ@w—Uﬂ@W—UP@J”@'
0
1 1 1
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= 2a, — 3(V3— Va)- (21)
When N = 1, therefore, it suffices to know three coefficients which depend on the dispersion indicatrix:
1 1
= {du [P wyaw, (22)
0 0
1 1
=3[dufPiew—1P@, wd, (23)
0 0
1 1
=9 fdp [ Pi@p—1)P @ — 1) P, W)dy, (24)
0 0

inasmuch as all other coefficients are expressed in terms of these.

Taking into account the relations derived here, an analytical expression for q is most conveniently
obtained by reducing the system (6) to

de(; 9 = Ayes (1) + Ay, (1) + 245 (1 — @) 13 (7},
T

de; 9 = A3€3 (T) + A4e4 (t)—8n (1 —o) Ib (T)’
T

M = Asel (1) + Ages (1),
dr
d%_fl’ =40+ 46,0 25)

where
e (v) = IT () — Iy (@), e;(v) = I () + 17 (v);
e,() = I (1) + I5 (1); €, (v) = I @) — IT (x);
A, =3 (@y—1);
[30’0 (Vs — Vo) — 9o (s — V) + 5];

Ay =1—ay;

1
(26)
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TABLE 2. Comparison between Radiation Flux q Calculated to the
N = 1 Approximation with the Data in [6] (M) and with the N =0
Approximation,

T=aT, oM
z, | o when 7=1,| ‘N=1 when =T Iv=1 "

I
a,_ whent=r, =1 "N=0
according to N=0 ° » %

from [ 6] [32] o “n=0
0,4 3,908 3,914 0,2 3,496 40,6
0,8 2,482 2,514 1,3 3,892 54,8
1,0 2,140 2,150 0,5 3,125 45,4
1,2 1,772 1,777 0,3 2,466 38,8
1,6 1,238 1,243 0,4 1,492 20,1
2,0 0,836 0,838 0,2 0,887 5,8
1 .
A= ‘2— [“’o(\’s—\’s)—wo(%’—ﬁ)”‘ﬁ]'
1 : .
Ay = o [3("0 (Y1 — Vo) — 20047, — 6] ’
1
Ag - ? [30)0 (Vg + Vo) — 0 (Vs + s) -+ 6]; 27

| .
A= [20vs — @ (7 — 72) -+ 2];

1 . !
4= “2‘ [mo (Ve 4 V) — 0 (V5 1+ Vo) — 6]-
If coefficients aj in the Legendre expansion of the dispersion indicatrix are known, then the formulas
in [4] for the integrals of Legendre polynomials yield the following expressions for coefficients vy, V3, and

Vet

1 l

1
; 4 i 1 1
= Pu, w)dy A? ‘ dulP =1, o ——g g
V1 OY 0\ {w, w)du a; 0\1 ) M g At % e O (28)
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Voo 3 | du | Py@y — )P, w)dy
0 0

1
= 6 g dp \’ WP, p)dp — 3y
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0
1 1 1

~6Y \ P;(n)dp \ WP, () dy — 3y,

=0

1
,.3(1—\71%- —3—01), (29)
l i
Vo =9 dy SP @u— ) Py@w — D P, W)du
0
1 1

= 18 S dp \ WPy (2p — 1) P (p, p)dpn’ — 57,
b0

1 ’ 1 1 1 1
-—“9[’\71—2(1—{—?(11)}—%—36(7—%—9-&1-1*'—6-;&2—{-%64—@4) (30)

In these formulas we have retained only I = 5 terms of the indicatrix expansions, because such dis-
persion indicatrices are most often of interest.

In order to compare our method with other methods of calculating the radiation flux, system (25)
was solved analytically for the case wy = 0.5 with a spherical and with the simplest elongated dispersion
indicatrix P(6) = 1 + cos 6.

Let the boundary conditions for Eq. (1) be

IO, Wso= Ey, (1, !-'«)[u<0 = E»z- (381)
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TABLE 3. Comparison between Reflectivity Values and between
Transmittivity Values for a Layer, Obtained in the Differential-
Difference Approximation with an Isotropic Intensity Distribution in
the Flux (g), by the Moments Method in the First Approximation (M),
in an Approximation Analogous to the Eddington Approximation (E),
and in the N = 1 Approximation

Reflectivity
Rg—Ry Ru—R RE-Ry_.
To Rg Ry % —‘. % Rm -M_A_’il: % REg ——#A, %
=1 Ry N=1
0,1 0,044 0,042 4,7 0,041 2,4 0,037 11,9
0,5 0,134 0,115 16,5 0,111 3,6 0,123 6,9
1,0 0,163 0,130 25,3 0,136 4,4 0,158 21,5
20 | 0,169 | 0,142 19.0 0,146 2.6 0,171 20,4
Transmittivity
Dg—D,_ Du—D DE—-D,
T Dg Dyt =% bw | M=l pp |l
N=1 Dy N=1
0,1 0,860 | 0,866 0,7 0,867 0,1 0,879 1,5
0.5 0,491 | 0,531 9.4 0,530 0,2 0,530 0,2
1,0 | 0,236 | 0,307 23,1 0,308 0.3 0,984 7.5
2,0 0,058 0,111 47,7 0,109 1,8 I 0,083 25,2
|

Through transformations analogous to those performed on (3), we arrive at
I (0) = 4nE;, I (0) =0,
Iy (0 = 4xnE,, IT (0)=0.

The boundary conditions for system (25) with E; = 2 and E; = 0 are then

ey (@) + &, (@]k=o =0, e (¥) +- & (1) [t=0 = 16m,
ez (@) — € (@) fimr, = 0, [ () — &y ()]s, = 0.
T'hey signify that there is no radiation when 7 = To(ez (T)—ey (1) = 2I7(T), es(t)—ey(1) = 2I5(7)) and that

the radiation is diffusive when 7 = 0(ey (1) + e4(1) = 2If(7)), while its intensity is determined by the magni-
tude of I} (0)(ey(r) + ey(r) = 2I5(1)).

The expression for the thermal radiation flux is, according to (17),
g = €+ 8" 1 T - e, (32)

where coefficients cj have been obtained from the boundary conditions and its values are listed for various
values of 7, in Table 1. The characteristic values are the roots of the characteristic equation of system

@5):
M 2=+l/a_+V.‘}iﬂ As 4=+‘/a—"V“2—4”
’ - ) T - - 3

where
¢ = AA + A,A; + A4 -+ A,

(32a)
b= (AaAs - A6A7)(A1A4 - A2A3).

Calculations of the thermal radiation flux for T = 7, and the simplest forward elongated dispersion
indicatrix are compared in Table 2 with the calculations in [6] and with the results of the zeroth approxi-
mation. Evidently, the results according to formula (32) agree closely with those in [6], where the prob-
lem has been solved by numerical methods basically to the same approximation, while a comparison with
the exact solution indicates that the method proposed in [6] is very accurate. The zeroth approximation,
according to Table 2, does not yield the necessary accuracy in the calculation of radiation fluxes.

With the aid of Eq. (32), one can determine the radiation characteristics of a layer. On the basis of
(381), a hemispherical radiation flux incident on a layer with v = 0 is equal to 7E;. A radiation flux q(0)
represents the difference between the flux incident on the layer and the flux reflected from the layer, if
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there is'no radiation when 7 = 7. Therefore, the transmittivity and the reflectivity of a layer can be cal-
culated according to these respective formulas:

D— q{To) ’
nE, 3
nE —qOe= _;_ 90e—0

R= nE, nkE,

Calculations according to formula (33) and the corresponding formulas in [5], where a solution has
been obtained on the basis of the differential-difference approximation for an isotropic intensity distribution
in the flux, are compared in Table 3 with the solution by the moments method in the first approximation
{6] and with the solution in the approximation analogous to the Eddington approximation and also shown in
[6]. The latter solution had been obtained on the basis of the one-dimensional problem of radiation through
a layer [7, 8], by changing 7y — v 37,.

According to Table 3, the results of the N = 1 approximation agree closely with the solution by the
moments method in the first approximation, which in turn ensures a satisfactory accuracy in the calculation
of radiation fluxes.

NOTATION
Aj are the coefficients in system (25) defined for formulas (27);
a,b are the expressions defined in (32a);
aj are the coefficients in the Legendre polynomial expansion of the dispersion indica-
trix;
D is the transmittivity of a layer;
Ef, EF are the radiation fluxes in opposite directions;
I(r, 1) is the radiation intensity;
Ipr) is the radiation intensity of a perfectly black body;
ej(T) are the quantities defined by formulas (26) (i=1, 2, 3, 4);
R is the is the reflectivity of a layer;
q is the radiation flux;
Y4k, Biks Vik are the coefficients defined by formulas (7), (8), and (10);
Aj are the roots of the characteristic equation of system (25);
£{ is the emissivity of a boundary surface (i = 1, 2);
Pi is the reflectivity of a boundary surface (i =1, 2);
T is the optical thickness (density);
6, @ are the angles;
71 =CoSs 6; )
Wy is the albedo of a single dispersion.

LITERATURE CITED
1. B. Davison and J. B. Sykes, Neutron Transport Theory, Oxford University Press (1957). .

2. S. Chandrasekar, Transmission of Radiant Energy [Russian translation], Izd. hostr. Lit., Moscow
(1953).

3. V. N. Adrianov, in: Heat Transfer, Hydrodynamics, and Thermophysical Properties of Matter [in
Russian], Izd. Nauka, Moscow (1968), p. 123.

4. Whittacker and Watson, Study Course in Modern Analysis [Russian translation], Gosizdat, Moscow
(1963), Part 2.

5. V. N. Adrianov, in: Heat Transfer, Hydrodynamics, and Thermophysical Properties of Matter [in

Russian], Izd. Nauka, Moscow (1968), p. 139.

6. Yu. A. Popov, Teplofiz, Vys. Temp., No. 1 (1969).

7. V. V. Sobolev, Energy Radiation through the Atmosphere of Stars and Planets [in Russian], Goste-
khizdat (1956). '

8. M. M. Gurevich, Phys. Zeitschr. [German], 31, 753 (1930).



